Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
1.
Heliyon ; 10(7): e28722, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38623231

RESUMO

Purpose: To investigate the potential of radiomics signatures (RSs) from intratumoral and peritumoral regions on multiparametric magnetic resonance imaging (MRI) to noninvasively evaluate HER2 status in breast cancer. Method: In this retrospective study, 992 patients with pathologically confirmed breast cancers who underwent preoperative MRI were enrolled. The breast cancer lesions were segmented manually, and the intratumor region of interest (ROIIntra) was dilated by 2, 4, 6 and 8 mm (ROIPeri2mm, ROIPeri4mm, ROIPeri6mm, and ROIPeri8mm, respectively). Quantitative radiomics features were extracted from dynamic contrast-enhanced T1-weighted imaging (DCE-T1), fat-saturated T2-weighted imaging (T2) and diffusion-weighted imaging (DWI). A three-step procedure was performed for feature selection, and RSs were constructed using a support vector machine (SVM) to predict HER2 status. Result: The best single-area RSs for predicting HER2 status were DCE_Peri4mm-RS, T2_Peri4mm-RS, and DWI_Peri4mm-RS, yielding areas under the curve (AUCs) of 0.716 (95% confidence interval (CI), 0.648-0.778), 0.706 (95% CI, 0.637-0.768), and 0.719 (95% CI, 0.651-0.780), respectively, in the test set. The optimal RSs combining intratumoral and peritumoral regions for evaluating HER2 status were DCE-T1_Intra + DCE_Peri4mm-RS, T2_Intra + T2_Peri6mm-RS and DWI_Intra + DWI_Peri4mm-RS, with AUCs of 0.752 (95% CI, 0.686-0.810), 0.754 (95% CI, 0.688-0.812) and 0.725 (95% CI, 0.657-0.786), respectively, in the test set. Combining three sequences in the ROIIntra, ROIPeri2mm, ROIPeri4mm, ROIPeri6mm and ROIPeri8mm areas, the optimal RS was DCE-T1_Peri4mm + T2_Peri4mm + DWI_Peri4mm-RS, achieving an AUC of 0.795 (95% CI, 0.733-0.849) in the test set. Conclusion: This study systematically explored the influence of the intratumoral region, different peritumoral sizes and their combination in radiomics analysis for predicting HER2 status in breast cancer based on multiparametric MRI and found the optimal RS.

2.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612692

RESUMO

Abscisic acid-responsive element-binding factor 1 (ABF1), a key transcription factor in the ABA signal transduction process, regulates the expression of downstream ABA-responsive genes and is involved in modulating plant responses to abiotic stress and developmental processes. However, there is currently limited research on the feedback regulation of ABF1 in ABA signaling. This study delves into the function of BcABF1 in Pakchoi. We observed a marked increase in BcABF1 expression in leaves upon ABA induction. The overexpression of BcABF1 not only spurred Arabidopsis growth but also augmented the levels of endogenous IAA. Furthermore, BcABF1 overexpression in Arabidopsis significantly decreased leaf water loss and enhanced the expression of genes associated with drought tolerance in the ABA pathway. Intriguingly, we found that BcABF1 can directly activate BcPYL4 expression, a critical receptor in the ABA pathway. Similar to BcABF1, the overexpression of BcPYL4 in Arabidopsis also reduces leaf water loss and promotes the expression of drought and other ABA-responsive genes. Finally, our findings suggested a novel feedback regulation mechanism within the ABA signaling pathway, wherein BcABF1 positively amplifies the ABA signal by directly binding to and activating the BcPYL4 promoter.


Assuntos
Ácido Abscísico , Arabidopsis , Retroalimentação , Arabidopsis/genética , Secas , Água
3.
Nat Med ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627559

RESUMO

Cancer of unknown primary (CUP) site poses diagnostic challenges due to its elusive nature. Many cases of CUP manifest as pleural and peritoneal serous effusions. Leveraging cytological images from 57,220 cases at four tertiary hospitals, we developed a deep-learning method for tumor origin differentiation using cytological histology (TORCH) that can identify malignancy and predict tumor origin in both hydrothorax and ascites. We examined its performance on three internal (n = 12,799) and two external (n = 14,538) testing sets. In both internal and external testing sets, TORCH achieved area under the receiver operating curve values ranging from 0.953 to 0.991 for cancer diagnosis and 0.953 to 0.979 for tumor origin localization. TORCH accurately predicted primary tumor origins, with a top-1 accuracy of 82.6% and top-3 accuracy of 98.9%. Compared with results derived from pathologists, TORCH showed better prediction efficacy (1.677 versus 1.265, P < 0.001), enhancing junior pathologists' diagnostic scores significantly (1.326 versus 1.101, P < 0.001). Patients with CUP whose initial treatment protocol was concordant with TORCH-predicted origins had better overall survival than those who were administrated discordant treatment (27 versus 17 months, P = 0.006). Our study underscores the potential of TORCH as a valuable ancillary tool in clinical practice, although further validation in randomized trials is warranted.

4.
Front Oncol ; 14: 1357145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567148

RESUMO

Objective: To investigate the value of predicting axillary lymph node (ALN) metastasis based on intratumoral and peritumoral dynamic contrast-enhanced MRI (DCE-MRI) radiomics and clinico-radiological characteristics in breast cancer. Methods: A total of 473 breast cancer patients who underwent preoperative DCE-MRI from Jan 2017 to Dec 2020 were enrolled. These patients were randomly divided into training (n=378) and testing sets (n=95) at 8:2 ratio. Intratumoral regions (ITRs) of interest were manually delineated, and peritumoral regions of 3 mm (3 mmPTRs) were automatically obtained by morphologically dilating the ITR. Radiomics features were extracted, and ALN metastasis-related radiomics features were selected by the Mann-Whitney U test, Z score normalization, variance thresholding, K-best algorithm and least absolute shrinkage and selection operator (LASSO) algorithm. Clinico-radiological risk factors were selected by logistic regression and were also used to construct predictive models combined with radiomics features. Then, 5 models were constructed, including ITR, 3 mmPTR, ITR+3 mmPTR, clinico-radiological and combined (ITR+3 mmPTR+ clinico-radiological) models. The performance of models was assessed by sensitivity, specificity, accuracy, F1 score and area under the curve (AUC) of receiver operating characteristic (ROC), calibration curves and decision curve analysis (DCA). Results: A total of 2264 radiomics features were extracted from each region of interest (ROI), 3 and 10 radiomics features were selected for the ITR and 3 mmPTR, respectively. 5 clinico-radiological risk factors were selected, including lesion size, human epidermal growth factor receptor 2 (HER2) expression, vascular cancer thrombus status, MR-reported ALN status, and time-signal intensity curve (TIC) type. In the testing set, the combined model showed the highest AUC (0.839), specificity (74.2%), accuracy (75.8%) and F1 Score (69.3%) among the 5 models. DCA showed that it had the greatest net clinical benefit compared to the other models. Conclusion: The intra- and peritumoral radiomics models based on DCE-MRI could be used to predict ALN metastasis in breast cancer, especially for the combined model with clinico-radiological characteristics showing promising clinical application value.

5.
J Magn Reson Imaging ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602245

RESUMO

BACKGROUND: The detection rate of lung nodules has increased considerably with CT as the primary method of examination, and the repeated CT examinations at 3 months, 6 months or annually, based on nodule characteristics, have increased the radiation exposure of patients. So, it is urgent to explore a radiation-free MRI examination method that can effectively address the challenges posed by low proton density and magnetic field inhomogeneities. PURPOSE: To evaluate the potential of zero echo time (ZTE) MRI in lung nodule detection and lung CT screening reporting and data system (lung-RADS) classification, and to explore the value of ZTE-MRI in the assessment of lung nodules. STUDY TYPE: Prospective. POPULATION: 54 patients, including 21 men and 33 women. FIELD STRENGTH/SEQUENCE: Chest CT using a 16-slice scanner and ZTE-MRI at 3.0T based on fast gradient echo. ASSESSMENT: Nodule type (ground-glass nodules, part-solid nodules, and solid nodules), lung-RADS classification, and nodule diameter (manual measurement) on CT and ZTE-MRI images were recorded. STATISTICAL TESTS: The percent of concordant cases, Kappa value, intraclass correlation coefficient (ICC), Wilcoxon signed-rank test, Spearman's correlation, and Bland-Altman. The p-value <0.05 is considered significant. RESULTS: A total of 54 patients (age, 54.8 ± 11.9 years; 21 men) with 63 nodules were enrolled. Compared with CT, the total nodule detection rate of ZTE-MRI was 85.7%. The intermodality agreement of ZTE-MRI and CT lung nodules type evaluation was substantial (Kappa = 0.761), and the intermodality agreement of ZTE-MRI and CT lung-RADS classification was moderate (Kappa = 0.592). The diameter measurements between ZTE-MRI and CT showed no significant difference and demonstrated a high degree of interobserver (ICC = 0.997-0.999) and intermodality (ICC = 0.956-0.985) agreements. DATA CONCLUSION: The measurement of nodule diameter by pulmonary ZTE-MRI is similar to that by CT, but the ability of lung-RADS to classify nodes from MRI images still requires further research. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.

6.
Cancer Imaging ; 24(1): 33, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439101

RESUMO

OBJECTIVES: To differentiate benign and malignant solitary pulmonary lesions (SPLs) by amide proton transfer-weighted imaging (APTWI), mono-exponential model DWI (MEM-DWI), stretched exponential model DWI (SEM-DWI), and 18F-FDG PET-derived parameters. METHODS: A total of 120 SPLs patients underwent chest 18F-FDG PET/MRI were enrolled, including 84 in the training set (28 benign and 56 malignant) and 36 in the test set (13 benign and 23 malignant). MTRasym(3.5 ppm), ADC, DDC, α, SUVmax, MTV, and TLG were compared. The area under receiver-operator characteristic curve (AUC) was used to assess diagnostic efficacy. The Logistic regression analysis was used to identify independent predictors and establish prediction model. RESULTS: SUVmax, MTV, TLG, α, and MTRasym(3.5 ppm) values were significantly lower and ADC, DDC values were significantly higher in benign SPLs than malignant SPLs (all P < 0.01). SUVmax, ADC, and MTRasym(3.5 ppm) were independent predictors. Within the training set, the prediction model based on these independent predictors demonstrated optimal diagnostic efficacy (AUC, 0.976; sensitivity, 94.64%; specificity, 92.86%), surpassing any single parameter with statistical significance. Similarly, within the test set, the prediction model exhibited optimal diagnostic efficacy. The calibration curves and DCA revealed that the prediction model not only had good consistency but was also able to provide a significant benefit to the related patients, both in the training and test sets. CONCLUSION: The SUVmax, ADC, and MTRasym(3.5 ppm) were independent predictors for differentiation of benign and malignant SPLs, and the prediction model based on them had an optimal diagnostic efficacy.


Assuntos
Fluordesoxiglucose F18 , Prótons , Humanos , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Amidas
7.
Med Phys ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421681

RESUMO

BACKGROUND: Gadolinium-based contrast agents are commonly used in brain magnetic resonance imaging (MRI), however, they cannot be used by patients with allergic reactions or poor renal function. For long-term follow-up patients, gadolinium deposition in the body can cause nephrogenic systemic fibrosis and other potential risks. PURPOSE: Developing a new method of enhanced image synthesis based on the advantages of multisequence MRI has important clinical value for these patients. In this paper, an end-to-end synthesis model structure similarity index measure (SSIM)-based Dual Constrastive Learning with Attention (SDACL) based on contrastive learning is proposed to synthesize contrast-enhanced T1 (T1ce) using three unenhanced MRI images of T1, T2, and Flair in patients with glioma. METHODS: The model uses the attention-dilation generator to enlarge the receptive field by expanding the residual blocks and to strengthen the feature representation and context learning of multisequence MRI. To enhance the detail and texture performance of the imaged tumor area, a comprehensive loss function combining patch-level contrast loss and structural similarity loss is created, which can effectively suppress noise and ensure the consistency of synthesized images and real images. RESULTS: The normalized root-mean-square error (NRMSE), peak signal-to-noise ratio (PSNR), and SSIM of the model on the independent test set are 0.307  ± $\pm$  0.12, 23.337  ± $\pm$  3.21, and 0.881  ± $\pm$  0.05, respectively. CONCLUSIONS: Results show this method can be used for the multisequence synthesis of T1ce images, which can provide valuable information for clinical diagnosis.

8.
bioRxiv ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38352322

RESUMO

Parkinson's disease (PD) is a complex neurological disorder characterized by many motor and non-motor symptoms. While most studies focus on the motor symptoms of the disease, it is important to identify markers that underlie different facets of the disease. In this case-control study, we sought to discover reliable, individualized functional connectivity markers associated with both motor and mood symptoms of PD. Using functional MRI, we extensively sampled 166 patients with PD (64 women, 102 men; mean age=61.8 years, SD=7.81) and 51 healthy control participants (32 women, 19 men; mean age=55.68 years, SD=7.62). We found that a model consisting of 44 functional connections predicted both motor (UPDRS-III: Pearson r=0.21, FDR-adjusted p=0.006) and mood symptoms (HAMD: Pearson r=0.23, FDR-adjusted p=0.006; HAMA: Pearson r=0.21, FDR-adjusted p=0.006). Two sets of connections contributed differentially to these predictions. Between-network connections, mainly connecting the sensorimotor and visual large-scale functional networks, substantially contributed to the prediction of motor measures, while within-network connections in the insula and sensorimotor network contributed more so to mood prediction. The middle to posterior insula region played a particularly important role in predicting depression and anxiety scores. We successfully replicated and generalized our findings in two independent PD datasets. Taken together, our findings indicate that sensorimotor and visual network markers are indicative of PD brain pathology, and that distinct subsets of markers are associated with motor and mood symptoms of PD.

9.
IEEE Trans Med Imaging ; PP2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386580

RESUMO

Full quantification of brain PET requires the blood input function (IF), which is traditionally achieved through an invasive and time-consuming arterial catheter procedure, making it unfeasible for clinical routine. This study presents a deep learning based method to estimate the input function (DLIF) for a dynamic brain FDG scan. A long short-term memory combined with a fully connected network was used. The dataset for training was generated from 85 total-body dynamic scans obtained on a uEXPLORER scanner. Time-activity curves from 8 brain regions and the carotid served as the input of the model, and labelled IF was generated from the ascending aorta defined on CT image. We emphasize the goodness-of-fitting of kinetic modeling as an additional physical loss to reduce the bias and the need for large training samples. DLIF was evaluated together with existing methods in terms of RMSE, area under the curve, regional and parametric image quantifications. The results revealed that the proposed model can generate IFs that closer to the reference ones in terms of shape and amplitude compared with the IFs generated using existing methods. All regional kinetic parameters calculated using DLIF agreed with reference values, with the correlation coefficient being 0.961 (0.913) and relative bias being 1.68±8.74% (0.37±4.93%) for Ki (K1). In terms of the visual appearance and quantification, parametric images were also highly identical to the reference images. In conclusion, our experiments indicate that a trained model can infer an image-derived IF from dynamic brain PET data, which enables subsequent reliable kinetic modeling.

10.
Stroke ; 55(3): 660-669, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38299341

RESUMO

BACKGROUND: Our primary objective was to assess the association between joint exposure to various air pollutants and the risk of ischemic stroke (IS) and the modification of the genetic susceptibility. METHODS: This observational cohort study included 307 304 British participants from the United Kingdom Biobank, who were stroke-free and possessed comprehensive baseline data on genetics, air pollutant exposure, alcohol consumption, and dietary habits. All participants were initially enrolled between 2006 and 2010 and were followed up until 2022. An air pollution score was calculated to assess joint exposure to 5 ambient air pollutants, namely particulate matter with diameters equal to or <2.5 µm, ranging from 2.5 to 10 µm, equal to or <10 µm, as well as nitrogen oxide and nitrogen dioxide. To evaluate individual genetic risk, a polygenic risk score for IS was calculated for each participant. We adjusted for demographic, social, economic, and health covariates. Cox regression models were utilized to estimate the associations between air pollution exposure, polygenic risk score, and the incidence of IS. RESULTS: Over a median follow-up duration of 13.67 years, a total of 2476 initial IS events were detected. The hazard ratios (95% CI) of IS for per 10 µg/m3 increase in particulate matter with diameters equal to or <2.5 µm, ranging from 2.5 to 10 µm, equal to or <10 µm, nitrogen dioxide, and nitrogen oxide were 1.73 (1.33-2.14), 1.24 (0.88-1.70), 1.13 (0.89-1.33), 1.03 (0.98-1.08), and 1.04 (1.02-1.07), respectively. Furthermore, individuals in the highest quintile of the air pollution score exhibited a 29% to 66% higher risk of IS compared with those in the lowest quintile. Notably, participants with both high polygenic risk score and air pollution score had a 131% (95% CI, 85%-189%) greater risk of IS than participants with low polygenic risk score and air pollution score. CONCLUSIONS: Our findings suggested that prolonged joint exposure to air pollutants may contribute to an increased risk of IS, particularly among individuals with elevated genetic susceptibility to IS.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , AVC Isquêmico , Humanos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , AVC Isquêmico/induzido quimicamente , 60682 , Bancos de Espécimes Biológicos , Material Particulado/efeitos adversos , Material Particulado/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Óxidos de Nitrogênio , Óxido Nítrico , 60488 , Exposição Ambiental/efeitos adversos
11.
Sci Rep ; 14(1): 2045, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267449

RESUMO

To investigate the prognostic value of lymph node status in patients with cervical cancer (CC) patients who underwent neoadjuvant chemotherapy (NACT) and followed hysterectomy. Patients in two referral centers were retrospectively analyzed. The baseline tumor size and radiological lymph node status (LNr) were evaluated on pre-NACT MRI. Tumor histology, differentiation and pathological lymph node status (LNp) were obtained from post-operative specimen. The log-rank test was used to compare survival between patient groups. Cox proportional hazards regression models were employed to estimate the hazard ratio (HR) of various factors with progression-free survival (PFS) and overall survival (OS). A total of 266 patients were included. Patients with 2018 FIGO IIIC showed worse PFS compared to those with FIGO IB-IIB (p < 0.001). The response rate in patients with LNp(-) was 64.1% (134/209), significantly higher than that of 45.6% (26/57) in patients with LNp( +) (p = 0.011). Multivariate Cox analysis identified the main independent predictors of PFS as LNp( +) (HR = 3.777; 95% CI 1.715-8.319), non-SCC (HR = 2.956; 95% CI 1.297-6.736), poor differentiation (HR = 2.370; 95% CI 1.130-4.970) and adjuvant radiation (HR = 3.266; 95% CI 1.183-9.019). The interaction between LNr and LNp regarding PFS were significant both for univariate and multivariate (P = 0.000171 and 1.5357e-7 respectively). In patients with LNr( +), a significant difference in PFS was observed between patients with LNp(-) and LNp( +) (p = 0.0027). CC patients with FIGO 2018 stage IIIC who underwent NACT and followed hysterectomy had worse PFS compared to those with IB-IIB. LNp( +), non-SCC, poor differentiation and adjuvant radiation were independent risk factors for PFS. The adverse prognostic value of LNp( +) was more significant in patients with LNr( +).


Assuntos
Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/tratamento farmacológico , Prognóstico , Terapia Neoadjuvante , Estudos Retrospectivos , Histerectomia , Linfonodos/diagnóstico por imagem
12.
BMC Med Imaging ; 24(1): 28, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38279127

RESUMO

BACKGROUND: Node Reporting and Data System (Node-RADS) was proposed and can be applied to lymph nodes (LNs) across all anatomical sites. This study aimed to investigate the diagnostic performance of Node-RADS in cervical cancer patients. METHODS: A total of 81 cervical cancer patients treated with radical hysterectomy and LN dissection were retrospectively enrolled. Node-RADS evaluations were performed by two radiologists on preoperative MRI scans for all patients, both at the LN level and patient level. Chi-square and Fisher's exact tests were employed to evaluate the distribution differences in size and configuration between patients with and without LN metastasis (LNM) in various regions. The receiver operating characteristic (ROC) and the area under the curve (AUC) were used to explore the diagnostic performance of the Node-RADS score for LNM. RESULTS: The rates of LNM in the para-aortic, common iliac, internal iliac, external iliac, and inguinal regions were 7.4%, 9.3%, 19.8%, 21.0%, and 2.5%, respectively. At the patient level, as the NODE-RADS score increased, the rate of LNM also increased, with rates of 26.1%, 29.2%, 42.9%, 80.0%, and 90.9% for Node-RADS scores 1, 2, 3, 4, and 5, respectively. At the patient level, the AUCs for Node-RADS scores > 1, >2, > 3, and > 4 were 0.632, 0.752, 0.763, and 0.726, respectively. Both at the patient level and LN level, a Node-RADS score > 3 could be considered the optimal cut-off value with the best AUC and accuracy. CONCLUSIONS: Node-RADS is effective in predicting LNM for scores 4 to 5. However, the proportions of LNM were more than 25% at the patient level for scores 1 and 2, which does not align with the expected very low and low probability of LNM for these scores.


Assuntos
Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/cirurgia , Neoplasias do Colo do Útero/patologia , Estudos Retrospectivos , Metástase Linfática/diagnóstico por imagem , Metástase Linfática/patologia , Linfonodos/diagnóstico por imagem , Linfonodos/cirurgia , Linfonodos/patologia , Imageamento por Ressonância Magnética
13.
Korean J Radiol ; 25(2): 189-198, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38288898

RESUMO

OBJECTIVE: To investigate the prognostic utility of radiomics features extracted from 18F-fluorodeoxyglucose (FDG) PET/CT combined with clinical factors and metabolic parameters in predicting progression-free survival (PFS) and overall survival (OS) in individuals diagnosed with extranodal nasal-type NK/T cell lymphoma (ENKTCL). MATERIALS AND METHODS: A total of 126 adults with ENKTCL who underwent 18F-FDG PET/CT examination before treatment were retrospectively included and randomly divided into training (n = 88) and validation cohorts (n = 38) at a ratio of 7:3. Least absolute shrinkage and selection operation Cox regression analysis was used to select the best radiomics features and calculate each patient's radiomics scores (RadPFS and RadOS). Kaplan-Meier curve and Log-rank test were used to compare survival between patient groups risk-stratified by the radiomics scores. Various models to predict PFS and OS were constructed, including clinical, metabolic, clinical + metabolic, and clinical + metabolic + radiomics models. The discriminative ability of each model was evaluated using Harrell's C index. The performance of each model in predicting PFS and OS for 1-, 3-, and 5-years was evaluated using the time-dependent receiver operating characteristic (ROC) curve. RESULTS: Kaplan-Meier curve analysis demonstrated that the radiomics scores effectively identified high- and low-risk patients (all P < 0.05). Multivariable Cox analysis showed that the Ann Arbor stage, maximum standardized uptake value (SUVmax), and RadPFS were independent risk factors associated with PFS. Further, ß2-microglobulin, Eastern Cooperative Oncology Group performance status score, SUVmax, and RadOS were independent risk factors for OS. The clinical + metabolic + radiomics model exhibited the greatest discriminative ability for both PFS (Harrell's C-index: 0.805 in the validation cohort) and OS (Harrell's C-index: 0.833 in the validation cohort). The time-dependent ROC analysis indicated that the clinical + metabolic + radiomics model had the best predictive performance. CONCLUSION: The PET/CT-based clinical + metabolic + radiomics model can enhance prognostication among patients with ENKTCL and may be a non-invasive and efficient risk stratification tool for clinical practice.


Assuntos
Linfoma de Células T , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Adulto , Humanos , Fluordesoxiglucose F18 , Prognóstico , Estudos Retrospectivos , 60570
14.
Magn Reson Imaging ; 107: 160-163, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38176577

RESUMO

OBJECTIVES: The aim of this study was to reduce the time delay between gadolinium injection and 3D-FLAIR (three-dimensional fluid-attenuated inversion recovery) MRI by using a single dose of intravenous gadobutrol in Menière's disease patients. METHODS: 17 patients diagnosed with definite unilateral Meniere's disease underwent 3D-FLAIR MRI scans at 2, 4, and 6 h post-intravenous administration of a single-dose of gadobutrol. The signal intensity ratio of bilateral inner ear, cochlear and vestibular hydrops was measured at 2 h, 4 h and 6 h, while the differences in signal intensity ratio and endolymphatic hydrops were evaluated at three time points. RESULTS: The cochlea, vestibule, and semicircular canal exhibit clear structural features with distinct perilymph-endolymph boundaries at 2 h, 4 h, and 6 h. The signal intensity ratio of the affected ear was significantly higher than that of the unaffected ear at 2 h, 4 h, and 6 h. The signal intensity ratio at 4 h and 6 h in both the affected and unaffected ears was significantly higher than that at 2 h, but there was no significant difference between 4 h and 6 h. Cochlear hydrops and vestibular hydrops show no significant differences at these time points, demonstrating excellent consistency. CONCLUSIONS: We have demonstrated that 3D-FLAIR images acquired 2 h after intravenous administration of a single-dose gadobutrol are of high quality and equally effective as those obtained at the conventional 4-h time point for diagnosing endolymphatic hydrops in Menière's disease. In clinical practice, the delay time can be safely shortened to 2 h.


Assuntos
Hidropisia Endolinfática , Doença de Meniere , Compostos Organometálicos , Humanos , Doença de Meniere/diagnóstico por imagem , Meios de Contraste , Hidropisia Endolinfática/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imageamento Tridimensional , Edema
15.
IEEE Trans Med Imaging ; PP2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38194399

RESUMO

Metal implants and other high-density objects in patients introduce severe streaking artifacts in CT images, compromising image quality and diagnostic performance. Although various methods were developed for CT metal artifact reduction over the past decades, including the latest dual-domain deep networks, remaining metal artifacts are still clinically challenging in many cases. Here we extend the state-of-the-art dual-domain deep network approach into a quad-domain counterpart so that all the features in the sinogram, image, and their corresponding Fourier domains are synergized to eliminate metal artifacts optimally without compromising structural subtleties. Our proposed quad-domain network for MAR, referred to as Quad-Net, takes little additional computational cost since the Fourier transform is highly efficient, and works across the four receptive fields to learn both global and local features as well as their relations. Specifically, we first design a Sinogram-Fourier Restoration Network (SFR-Net) in the sinogram domain and its Fourier space to faithfully inpaint metal-corrupted traces. Then, we couple SFR-Net with an Image-Fourier Refinement Network (IFR-Net) which takes both an image and its Fourier spectrum to improve a CT image reconstructed from the SFR-Net output using cross-domain contextual information. Quad-Net is trained on clinical datasets to minimize a composite loss function. Quad-Net does not require precise metal masks, which is of great importance in clinical practice. Our experimental results demonstrate the superiority of Quad-Net over the state-of-the-art MAR methods quantitatively, visually, and statistically. The Quad-Net code is publicly available at https://github.com/longzilicart/Quad-Net.

16.
J Clin Nurs ; 33(6): 2165-2177, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38291345

RESUMO

AIMS AND OBJECTIVES: To investigate whether chronic diseases are associated with higher COVID-19 vaccine hesitancy and explore factors that influence COVID-19 vaccine hesitancy in patients with chronic diseases. BACKGROUND: Vaccine hesitancy has been acknowledged as one of the greatest hazards to public health. However, little information is available about COVID-19 vaccine hesitancy among patients with chronic diseases who may be more susceptible to COVID-19 infection, severe disease or death. METHODS: From 6 to 9 August 2021, we performed an internet-based cross-sectional survey with 22,954 participants (14.78% participants with chronic diseases). Propensity score matching with 1:1 nearest neighbourhood was used to reduce confounding factors between patients with chronic diseases and the general population. Using a multivariable logistic regression model, the factors impacting COVID-19 vaccine hesitancy were identified among patients with chronic diseases. RESULTS: Both before and after propensity score matching, patients with chronic diseases had higher COVID-19 vaccine hesitancy than the general population. In addition, self-reported poor health, multiple chronic diseases, lower sociodemographic backgrounds and lower trust in nurses and doctors were associated with COVID-19 vaccine hesitancy among patients with chronic diseases. CONCLUSIONS: Patients with chronic diseases were more hesitant about the COVID-19 vaccine. Nurses should focus on patients with chronic diseases with poor health conditions, low socioeconomic backgrounds and low trust in the healthcare system. RELEVANCE TO CLINICAL PRACTICE: Clinical nurses are recommended to not only pay more attention to the health status and sociodemographic characteristics of patients with chronic diseases but also build trust between nurses and patients by improving service levels and professional capabilities in clinical practice. PATIENT OR PUBLIC CONTRIBUTION: Patients or the public were not involved in setting the research question, the outcome measures, or the design or implementation of the study. However, all participants were invited to complete the digital informed consent and questionnaires.

17.
Cancer Imaging ; 24(1): 2, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167538

RESUMO

OBJECTIVES: Commercialized total-body PET scanners can provide high-quality images due to its ultra-high sensitivity. We compared the dynamic, regular static, and delayed 18F-fluorodeoxyglucose (FDG) scans to detect lesions in oncologic patients on a total-body PET/CT scanner. MATERIALS & METHODS: In all, 45 patients were scanned continuously for the first 60 min, followed by a delayed acquisition. FDG metabolic rate was calculated from dynamic data using full compartmental modeling, whereas regular static and delayed SUV images were obtained approximately 60- and 145-min post-injection, respectively. The retention index was computed from static and delayed measures for all lesions. Pearson's correlation and Kruskal-Wallis tests were used to compare parameters. RESULTS: The number of lesions was largely identical between the three protocols, except MRFDG and delayed images on total-body PET only detected 4 and 2 more lesions, respectively (85 total). FDG metabolic rate (MRFDG) image-derived contrast-to-noise ratio and target-to-background ratio were significantly higher than those from static standardized uptake value (SUV) images (P < 0.01), but this is not the case for the delayed images (P > 0.05). Dynamic protocol did not significantly differentiate between benign and malignant lesions just like regular SUV, delayed SUV, and retention index. CONCLUSION: The potential quantitative advantages of dynamic imaging may not improve lesion detection and differential diagnosis significantly on a total-body PET/CT scanner. The same conclusion applied to delayed imaging. This suggested the added benefits of complex imaging protocols must be weighed against the complex implementation in the future. CLINICAL RELEVANCE: Total-body PET/CT was known to significantly improve the PET image quality due to its ultra-high sensitivity. However, whether the dynamic and delay imaging on total-body scanner could show additional clinical benefits is largely unknown. Head-to-head comparison between two protocols is relevant to oncological management.


Assuntos
Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Compostos Radiofarmacêuticos , Diagnóstico Diferencial , Tomografia por Emissão de Pósitrons/métodos
19.
Comput Biol Med ; 168: 107707, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38000244

RESUMO

Radially sampling of magnetic resonance imaging (MRI) is an effective way to accelerate the imaging. How to preserve the image details in reconstruction is always challenging. In this work, a deep unrolled neural network is designed to emulate the iterative sparse image reconstruction process of a projected fast soft-threshold algorithm (pFISTA). The proposed method, an unrolled pFISTA network for Deep Radial MRI (pFISTA-DR), include the preprocessing module to refine coil sensitivity maps and initial reconstructed image, the learnable convolution filters to extract image feature maps, and adaptive threshold to robustly remove image artifacts. Experimental results show that, among the compared methods, pFISTA-DR provides the best reconstruction and achieved the highest PSNR, the highest SSIM and the lowest reconstruction errors.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Tomografia Computadorizada por Raios X , Imageamento por Ressonância Magnética/métodos
20.
Eur Radiol ; 34(1): 318-329, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37530809

RESUMO

OBJECTIVES: To develop an [18F]FDG PET/3D-UTE model based on clinical factors, three-dimensional ultrashort echo time (3D-UTE), and PET radiomics features via machine learning for the assessment of lymph node (LN) status in non-small cell lung cancer (NSCLC). METHODS: A total of 145 NSCLC patients (training, 101 cases; test, 44 cases) underwent whole-body [18F]FDG PET/CT and chest [18F]FDG PET/MRI were enrolled. Preoperative clinical factors and 3D-UTE, CT, and PET radiomics features were analyzed. The Mann-Whitney U test, LASSO regression, and SelectKBest were used for feature extraction. Five machine learning algorithms were used to establish prediction models, which were evaluated by the area under receiver-operator characteristic (ROC), DeLong test, calibration curves, and decision curve analysis (DCA). RESULTS: A prediction model based on random forest, consisting of four clinical factors, six 3D-UTE, and six PET radiomics features, was used as the final model for PET/3D-UTE. The AUCs of this model were 0.912 and 0.791 in the training and test sets, respectively, which not only showed different degrees of improvement over individual models such as clinical, 3D-UTE, and PET (AUC-training = 0.838, 0.834, and 0.828, AUC-test = 0.756, 0.745, and 0.768, respectively) but also achieved the similar diagnostic efficacy as the optimal PET/CT model (AUC-training = 0.890, AUC-test = 0.793). The calibration curves and DCA indicated good consistency (C-index, 0.912) and clinical utility of this model, respectively. CONCLUSION: The [18F]FDG PET/3D-UTE model based on clinical factors, 3D-UTE, and PET radiomics features using machine learning methods could noninvasively assess the LN status of NSCLC. CLINICAL RELEVANCE STATEMENT: A machine learning model of 18F-fluorodeoxyglucose positron emission tomography/ three-dimensional ultrashort echo time could noninvasively assess the lymph node status of non-small cell lung cancer, which provides a novel method with less radiation burden for clinical practice. KEY POINTS: • The 3D-UTE radiomics model using the PLS-DA classifier was significantly associated with LN status in NSCLC and has similar diagnostic performance as the clinical, CT, and PET models. • The [18F]FDG PET/3D-UTE model based on clinical factors, 3D-UTE, and PET radiomics features using the RF classifier could noninvasively assess the LN status of NSCLC and showed improved diagnostic performance compared to the clinical, 3D-UTE, and PET models. • In the assessment of LN status in NSCLC, the [18F]FDG PET/3D-UTE model has similar diagnostic efficacy as the [18F]FDG PET/CT model that incorporates clinical factors and CT and PET radiomics features.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Fluordesoxiglucose F18 , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Linfonodos/diagnóstico por imagem , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...